Search results
Results from the WOW.Com Content Network
The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).
Examples of graded potentials. Graded potentials are changes in membrane potential that vary according to the size of the stimulus, as opposed to being all-or-none.They include diverse potentials such as receptor potentials, electrotonic potentials, subthreshold membrane potential oscillations, slow-wave potential, pacemaker potentials, and synaptic potentials.
These gradients are critical for cellular identity and cell relocation. Similarly, the gradients produced by cells may influence cellular fate by their temporal and spatial characteristics. In certain organisms, the choice of cell fate can be determined by a gradient, a binary choice, or through a relay of molecules released by a cell. [1]
The equilibrium potential for an ion is the membrane potential at which there is no net movement of the ion. [1] [2] [3] The flow of any inorganic ion, such as Na + or K +, through an ion channel (since membranes are normally impermeable to ions) is driven by the electrochemical gradient for that ion.
Thermodynamically the flow of substances from one compartment to another can occur in the direction of a concentration or electrochemical gradient or against it. If the exchange of substances occurs in the direction of the gradient, that is, in the direction of decreasing potential, there is no requirement for an input of energy from outside the system; if, however, the transport is against ...
For example, figure 1 depicts the localized nature and the graded potential nature of these subthreshold membrane potential oscillations, also giving a visual representation of their placement on an action potential graph, comparing subthreshold oscillations versus a fire above the threshold. In some types of neurons, the membrane potential can ...
An electrochemical gradient is a gradient of electrochemical potential, usually for an ion that can move across a membrane. The gradient consists of two parts: The chemical gradient, or difference in solute concentration across a membrane. The electrical gradient, or difference in charge across a membrane.
Developmental bioelectricity is a sub-discipline of biology, related to, but distinct from, neurophysiology and bioelectromagnetics.Developmental bioelectricity refers to the endogenous ion fluxes, transmembrane and transepithelial voltage gradients, and electric currents and fields produced and sustained in living cells and tissues.