enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    Weight normalization (WeightNorm) [18] is a technique inspired by BatchNorm that normalizes weight matrices in a neural network, rather than its activations. One example is spectral normalization , which divides weight matrices by their spectral norm .

  3. Batch normalization - Wikipedia

    en.wikipedia.org/wiki/Batch_normalization

    Another possible reason for the success of batch normalization is that it decouples the length and direction of the weight vectors and thus facilitates better training. By interpreting batch norm as a reparametrization of weight space, it can be shown that the length and the direction of the weights are separated and can thus be trained separately.

  4. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Without normalization, the clusters were arranged along the x-axis, since it is the axis with most of variation. After normalization, the clusters are recovered as expected. In machine learning, we can handle various types of data, e.g. audio signals and pixel values for image data, and this data can include multiple dimensions. Feature ...

  5. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    Weight initialization [ edit ] Kumar suggested that the distribution of initial weights should vary according to activation function used and proposed to initialize the weights in networks with the logistic activation function using a Gaussian distribution with a zero mean and a standard deviation of 3.6/sqrt(N) , where N is the number of ...

  6. Flow-based generative model - Wikipedia

    en.wikipedia.org/wiki/Flow-based_generative_model

    A flow-based generative model is a generative model used in machine learning that explicitly models a probability distribution by leveraging normalizing flow, [1] [2] [3] which is a statistical method using the change-of-variable law of probabilities to transform a simple distribution into a complex one.

  7. Normalization (statistics) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(statistics)

    In the simplest cases, normalization of ratings means adjusting values measured on different scales to a notionally common scale, often prior to averaging. In more complicated cases, normalization may refer to more sophisticated adjustments where the intention is to bring the entire probability distributions of adjusted values into alignment.

  8. Mass flux - Wikipedia

    en.wikipedia.org/wiki/Mass_flux

    Mathematically, mass flux is defined as the limit =, where = = is the mass current (flow of mass m per unit time t) and A is the area through which the mass flows.. For mass flux as a vector j m, the surface integral of it over a surface S, followed by an integral over the time duration t 1 to t 2, gives the total amount of mass flowing through the surface in that time (t 2 − t 1): = ^.

  9. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    The lines lack agreement in their predictions and tend to overfit their data points: evident by the wobbly flow of the lines. By taking the average of 100 smoothers, each corresponding to a subset of the original dataset, we arrive at one bagged predictor (red line). The red line's flow is stable and does not overly conform to any data point(s).