enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differentiable manifold - Wikipedia

    en.wikipedia.org/wiki/Differentiable_manifold

    A differentiable manifold (of class C k) consists of a pair (M, O M) where M is a second countable Hausdorff space, and O M is a sheaf of local R-algebras defined on M, such that the locally ringed space (M, O M) is locally isomorphic to (R n, O). In this way, differentiable manifolds can be thought of as schemes modeled on R n.

  3. Diffeology - Wikipedia

    en.wikipedia.org/wiki/Diffeology

    Recall that a topological manifold is a topological space which is locally homeomorphic to . Differentiable manifolds generalize the notion of smoothness on in the following sense: a differentiable manifold is a topological manifold with a differentiable atlas, i.e. a collection of maps from open subsets of to the manifold which are used to "pull back" the differential structure from to the ...

  4. Differential structure - Wikipedia

    en.wikipedia.org/wiki/Differential_structure

    For compact manifolds, results depend on the complexity of the manifold as measured by the second Betti number b 2. For large Betti numbers b 2 > 18 in a simply connected 4-manifold, one can use a surgery along a knot or link to produce a new differential structure. With the help of this procedure one can produce countably infinite many ...

  5. Category of manifolds - Wikipedia

    en.wikipedia.org/wiki/Category_of_manifolds

    The objects of Man • p are pairs (,), where is a manifold along with a basepoint , and its morphisms are basepoint-preserving p-times continuously differentiable maps: e.g. : (,) (,), such that () =. [1] The category of pointed manifolds is an example of a comma category - Man • p is exactly ({}), where {} represents an arbitrary singleton ...

  6. de Rham theorem - Wikipedia

    en.wikipedia.org/wiki/De_Rham_theorem

    Then the result is being extended to manifolds having a basis which is a de Rham cover. This step is more technical. Finally, one easily shows that open subsets of and consequently any manifold has a basis which is a de Rham cover. Thus, invoking the previous step, finishes the proof.

  7. Topological manifold - Wikipedia

    en.wikipedia.org/wiki/Topological_manifold

    Every manifold has an "underlying" topological manifold, obtained by simply "forgetting" the added structure. [1] However, not every topological manifold can be endowed with a particular additional structure. For example, the E8 manifold is a topological manifold which cannot be endowed with a differentiable structure.

  8. AOL Mail - AOL Help

    help.aol.com/products/aol-webmail

    Get answers to your AOL Mail, login, Desktop Gold, AOL app, password and subscription questions. Find the support options to contact customer care by email, chat, or phone number.

  9. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899.