Search results
Results from the WOW.Com Content Network
Kroese's work spans a wide range of topics in applied probability and mathematical statistics, including telecommunication networks, reliability engineering, point processes, kernel density estimation, Monte Carlo methods, rare-event simulation, cross-entropy methods, randomized optimization, and machine learning.
The origins of mean-field type evolutionary computational techniques can be traced back to 1950 and 1954 with Alan Turing's work on genetic type mutation-selection learning machines [22] and the articles by Nils Aall Barricelli at the Institute for Advanced Study in Princeton, New Jersey.
Modeling and simulation are important in research. Representing the real systems either via physical reproductions at smaller scale, or via mathematical models that allow representing the dynamics of the system via simulation, allows exploring system behavior in an articulated way which is often either not possible, or too risky in the real world.
Students working in the Statistics Machine Room of the London School of Economics in 1964. Computational statistics, or statistical computing, is the study which is the intersection of statistics and computer science, and refers to the statistical methods that are enabled by using computational methods.
Human-in-the-loop simulation of outer space Visualization of a direct numerical simulation model. Historically, simulations used in different fields developed largely independently, but 20th-century studies of systems theory and cybernetics combined with spreading use of computers across all those fields have led to some unification and a more systematic view of the concept.
Simulation-based optimization (also known as simply simulation optimization) integrates optimization techniques into simulation modeling and analysis. Because of the complexity of the simulation, the objective function may become difficult and expensive to evaluate. Usually, the underlying simulation model is stochastic, so that the objective ...
Statistical learning theory is a framework for machine learning drawing from the fields of statistics and functional analysis. [ 1 ] [ 2 ] [ 3 ] Statistical learning theory deals with the statistical inference problem of finding a predictive function based on data.
Synthetic data is generated to meet specific needs or certain conditions that may not be found in the original, real data. One of the hurdles in applying up-to-date machine learning approaches for complex scientific tasks is the scarcity of labeled data, a gap effectively bridged by the use of synthetic data, which closely replicates real experimental data. [3]