Ad
related to: flow rate calculation example
Search results
Results from the WOW.Com Content Network
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
One example of standard conditions for the calculation of SCCM is = 0 °C (273.15 K) [1] and = 1.01 bar (14.72 psia) and a unity compressibility factor = 1 (i.e., an ideal gas is used for the definition of SCCM). [2] This example is for the semi-conductor-manufacturing industry.
The area required to calculate the mass flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface, e.g. for substances passing through a filter or a membrane, the real surface is the (generally curved) surface area of the filter, macroscopically - ignoring the area spanned by the holes in the filter/membrane ...
For a compressible fluid in a tube the volumetric flow rate Q(x) and the axial velocity are not constant along the tube; but the mass flow rate is constant along the tube length. The volumetric flow rate is usually expressed at the outlet pressure. As fluid is compressed or expanded, work is done and the fluid is heated or cooled.
Solving for Q then allows an estimate of the volumetric flow rate (discharge) without knowing the limiting or actual flow velocity. The formula can be obtained by use of dimensional analysis. In the 2000s this formula was derived theoretically using the phenomenological theory of turbulence. [4] [5]
Mathematically, mass flux is defined as the limit =, where = = is the mass current (flow of mass m per unit time t) and A is the area through which the mass flows.. For mass flux as a vector j m, the surface integral of it over a surface S, followed by an integral over the time duration t 1 to t 2, gives the total amount of mass flowing through the surface in that time (t 2 − t 1): = ^.
This depth is converted to a flow rate according to a theoretical formula of the form = where is the flow rate, is a constant, is the water level, and is an exponent which varies with the device used; or it is converted according to empirically derived level/flow data points (a "flow curve"). The flow rate can then be integrated over time into ...
In fluid dynamics, the volumetric flux is the rate of volume flow across a unit area (m 3 ·s −1 ·m −2), and has dimensions of distance/time (volume/(time*area)) - equivalent to mean velocity. The density of a particular property in a fluid's volume, multiplied with the volumetric flux of the fluid, thus defines the advective flux of that ...
Ad
related to: flow rate calculation example