enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.

  3. State variable - Wikipedia

    en.wikipedia.org/wiki/State_variable

    The set of possible combinations of state variable values is called the state space of the system. The equations relating the current state of a system to its most recent input and past states are called the state equations, and the equations expressing the values of the output variables in terms of the state variables and inputs are called the ...

  4. Controllability - Wikipedia

    en.wikipedia.org/wiki/Controllability

    For the simplest example of a continuous, LTI system, the row dimension of the state space expression ˙ = + determines the interval; each row contributes a vector in the state space of the system. If there are not enough such vectors to span the state space of x {\displaystyle \mathbf {x} } , then the system cannot achieve controllability.

  5. Markov decision process - Wikipedia

    en.wikipedia.org/wiki/Markov_decision_process

    Example of a simple MDP with three states (green circles) and two actions (orange circles), with two rewards (orange arrows) A Markov decision process is a 4-tuple (,,,), where: is a set of states called the state space. The state space may be discrete or continuous, like the set of real numbers.

  6. Multidimensional system - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_system

    A state-space model is a representation of a system in which the effect of all "prior" input values is contained by a state vector. In the case of an m-d system, each dimension has a state vector that contains the effect of prior inputs relative to that dimension. The collection of all such dimensional state vectors at a point constitutes the ...

  7. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  8. Full state feedback - Wikipedia

    en.wikipedia.org/wiki/Full_state_feedback

    System in open-loop. If the closed-loop dynamics can be represented by the state space equation (see State space (controls)) _ ˙ = _ + _, with output equation _ = _ + _, then the poles of the system transfer function are the roots of the characteristic equation given by

  9. State space search - Wikipedia

    en.wikipedia.org/wiki/State_space_search

    State space search is a process used in the field of computer science, including artificial intelligence (AI), in which successive configurations or states of an instance are considered, with the intention of finding a goal state with the desired property. Problems are often modelled as a state space, a set of states that a problem