Search results
Results from the WOW.Com Content Network
"The problem of deciding whether the definite contour multiple integral of an elementary meromorphic function is zero over an everywhere real analytic manifold on which it is analytic", a consequence of the MRDP theorem resolving Hilbert's tenth problem. [5] Determining the domain of a solution to an ordinary differential equation of the form
Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue, whereas the latter is complex problem solving (CPS) with multiple interrelated obstacles. [1]
To find all solutions, one simply makes a note and continues, rather than ending the process, when a solution is found, until all solutions have been tried. To find the best solution, one finds all solutions by the method just described and then comparatively evaluates them based upon some predefined set of criteria, the existence of which is a ...
Clearly, a #P problem must be at least as hard as the corresponding NP problem, since a count of solutions immediately tells if at least one solution exists, if the count is greater than zero. Surprisingly, some #P problems that are believed to be difficult correspond to easy (for example linear-time) P problems. [18]
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
Uzquiano (2010) uses these techniques to provide a two question solution to the amended puzzle. [9] [10] Two question solutions to both the original and amended puzzle take advantage of the fact that some gods have an inability to answer certain questions. Neither True nor False can provide an answer to the following question.
A problem statement is a description of an issue to be addressed, or a condition to be improved upon. It identifies the gap between the current problem and goal. The first condition of solving a problem is understanding the problem, which can be done by way of a problem statement. [1]
For example, the problem of factoring "Given a positive integer n, find a nontrivial prime factor of n." is a computational problem that has a solution, as there are many known integer factorization algorithms. A computational problem can be viewed as a set of instances or cases together with a, possibly empty, set of solutions for every ...