Search results
Results from the WOW.Com Content Network
One method is to write the interpolation polynomial in the Newton form (i.e. using Newton basis) and use the method of divided differences to construct the coefficients, e.g. Neville's algorithm. The cost is O( n 2 ) operations.
In the mathematical field of numerical analysis, a Newton polynomial, named after its inventor Isaac Newton, [1] is an interpolation polynomial for a given set of data points. The Newton polynomial is sometimes called Newton's divided differences interpolation polynomial because the coefficients of the polynomial are calculated using Newton's ...
Brahmagupta's interpolation formula is a second-order polynomial interpolation formula developed by the Indian mathematician and astronomer Brahmagupta (598–668 CE) in the early 7th century CE. The Sanskrit couplet describing the formula can be found in the supplementary part of Khandakadyaka a work of Brahmagupta completed in 665 CE. [1]
In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. [citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation.
Another way to see this result is to note that any interpolating cubic polynomial can be expressed as the sum of the unique interpolating quadratic polynomial plus an arbitrarily scaled cubic polynomial that vanishes at all three points in the interval, and the integral of this second term vanishes because it is odd within the interval.
The first degree polynomial equation = + is a line with slope a. A line will connect any two points, so a first degree polynomial equation is an exact fit through any two points with distinct x coordinates. If the order of the equation is increased to a second degree polynomial, the following results:
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
In numerical analysis, Hermite interpolation, named after Charles Hermite, is a method of polynomial interpolation, which generalizes Lagrange interpolation.Lagrange interpolation allows computing a polynomial of degree less than n that takes the same value at n given points as a given function.