Search results
Results from the WOW.Com Content Network
Although often referred to as the area of a circle in informal contexts, strictly speaking, the term disk refers to the interior region of the circle, while circle is reserved for the boundary only, which is a curve and covers no area itself. Therefore, the area of a disk is the more precise phrase for the area enclosed by a circle.
Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that
The area of the circle equals π times the shaded area. The area of the unit circle is π. π appears in formulae for areas and volumes of geometrical shapes based on circles, such as ellipses, spheres, cones, and tori. Below are some of the more common formulae that involve π. [153] The circumference of a circle with radius r is 2πr. The ...
A page from Archimedes' Measurement of a Circle. Measurement of a Circle or Dimension of the Circle (Greek: Κύκλου μέτρησις, Kuklou metrēsis) [1] is a treatise that consists of three propositions, probably made by Archimedes, ca. 250 BCE. [2] [3] The treatise is only a fraction of what was a longer work. [4] [5]
where C is the circumference of a circle, d is the diameter, and r is the radius. More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width. = where A is the area of a circle. More generally, =
The formula for the area of a circle (more properly called the area enclosed by a circle or the area of a disk) is based on a similar method. Given a circle of radius r, it is possible to partition the circle into sectors, as shown in the figure to the right. Each sector is approximately triangular in shape, and the sectors can be rearranged to ...
The circle is the shape with the largest area for a given length of perimeter (see Isoperimetric inequality). The circle is a highly symmetric shape: every line through the centre forms a line of reflection symmetry, and it has rotational symmetry around the centre for every angle.
This method was further developed and employed by Archimedes in the 3rd century BC and used to calculate the area of a circle, the surface area and volume of a sphere, area of an ellipse, the area under a parabola, the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, and the area of a ...