Search results
Results from the WOW.Com Content Network
A 2-dimensional spring system. In engineering and physics, a spring system or spring network is a model of physics described as a graph with a position at each vertex and a spring of given stiffness and length along each edge. This generalizes Hooke's law to higher dimensions.
The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers. This model is well-suited for modelling object with complex material properties such as nonlinearity and viscoelasticity .
A mass suspended from a spring, for example, might, if pulled and released, bounce up and down. On each bounce, the system tends to return to its equilibrium position, but overshoots it. Sometimes losses (e.g. frictional) damp the system and can cause the oscillations to gradually decay in amplitude towards zero or attenuate. The damping ratio ...
A simple mass–spring–damper system, and its equivalent bond-graph form. A bond graph is a graphical representation of a physical dynamic system.It allows the conversion of the system into a state-space representation.
Using the Tutte spring system for a graph that is not 3-connected may result in degeneracies, in which subgraphs of the given graph collapse onto a point or a line segment; however, an arbitrary planar graph may be drawn using the Tutte embedding by adding extra edges to make it 3-connected, drawing the resulting 3-connected graph, and then ...
The standard linear solid (SLS), also known as the Zener model after Clarence Zener, [1] is a method of modeling the behavior of a viscoelastic material using a linear combination of springs and dashpots to represent elastic and viscous components, respectively.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
vertical spring-mass system. The effective mass of the spring in a spring-mass system when using a heavy spring (non-ideal) of uniform linear density is of the mass of the spring and is independent of the direction of the spring-mass system (i.e., horizontal, vertical, and oblique systems all have the same effective mass). This is because ...