Search results
Results from the WOW.Com Content Network
The energy spectrum of gamma rays can be used to identify the decaying radionuclides using gamma spectroscopy. Very-high-energy gamma rays in the 100–1000 teraelectronvolt (TeV) range have been observed from astronomical sources such as the Cygnus X-3 microquasar.
By causing the materials to become radioactive (mainly by neutron activation, or in presence of high-energy gamma radiation by photodisintegration). By nuclear transmutation of the elements within the material including, for example, the production of Hydrogen and Helium which can in turn alter the mechanical properties of the materials and ...
During this collapse, energy may be released as a momentary burst of gamma-rays aligned to the axis of rotation. In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic events occurring in distant galaxies which represent the brightest and "most powerful class of explosion in the universe."
Studies have been performed on the use of shortwave radiation for cancer therapy and promoting wound healing, with some success. However, at a sufficiently high energy level, shortwave energy can be harmful to human health, potentially causing damage to biological tissues, for example by overheating or inducing electrical currents. [28]
Air showers of elementary particles made by gamma rays can also be distinguished from those produced by cosmic rays by the much greater depth of shower maximum, and the much lower quantity of muons. [7] Very-high-energy gamma rays are too low energy to show the Landau–Pomeranchuk–Migdal effect. Only magnetic fields perpendicular to the path ...
This leaves anyone exposed to penetrating gamma rays at high risk of ARS. Naturally, shielding the entire body from high energy gamma radiation is optimal, but the required mass to provide adequate attenuation makes functional movement nearly impossible.
The 16.5-second delay for the highest-energy gamma ray observed in this burst is consistent with some theories of quantum gravity, which state that all forms of light may not travel through space at the same speed. Very-high-energy gamma rays may be slowed down as they propagate through the quantum turbulence of space-time. [6] [7]
BATSE detected only a small number of TGF events in nine years (76), due to it having been constructed to study gamma ray bursts from outer space, which last much longer. In the early 2000s, the Ramaty High Energy Solar Spectroscopic Imager satellite observed TGFs with much higher energies than those recorded by BATSE. [4]