Search results
Results from the WOW.Com Content Network
The anti-Markovnikov rule can be illustrated using the addition of hydrogen bromide to isobutylene in the presence of benzoyl peroxide or hydrogen peroxide. The reaction of HBr with substituted alkenes was prototypical in the study of free-radical additions. Early chemists discovered that the reason for the variability in the ratio of ...
Morris Selig Kharasch (August 24, 1895 – October 9, 1957) was a pioneering organic chemist best known for his work with free radical additions and polymerizations. He defined the peroxide effect, explaining how an anti-Markovnikov orientation could be achieved via free radical addition. [1]
The reaction follows Markovnikov's rule (the hydroxy group will always be added to the more substituted carbon). The oxymercuration part of the reaction involves anti addition of OH group but the demercuration part of the reaction involves free radical mechanism and is not stereospecific, i.e. H and OH may be syn or anti to each other. [2] [3] [4]
In the presence of peroxides, HBr adds to a given alkene in an anti-Markovnikov addition fashion. Regiochemistry follows from the reaction mechanism, which exhibits halogen attack on the least-hindered unsaturated carbon.
Anne Troelstra [2] proved that it is an admissible rule in Heyting arithmetic. Later, the logician Harvey Friedman showed that Markov's rule is an admissible rule in first-order intuitionistic logic, Heyting arithmetic, and various other intuitionistic theories, [3] using the Friedman translation.
The reaction mechanism involves free radicals of the general formula CXCl 2 (X = Cl, H). For the precursors carbon tetrachloride and chloroform, the requisite radicals can arise by abstraction of a halogen atom by a electropositive metal. The addition proceeds in an anti-Markovnikov fashion. Early work linked the addition to olefin polymerization.
In terms of regiochemistry, hydroboration is typically anti-Markovnikov, i.e. the hydrogen adds to the most substituted carbon of the double bond. That the regiochemistry is reverse of a typical HX addition reflects the polarity of the B δ+-H δ− bonds. Hydroboration proceeds via a four-membered transition state: the hydrogen and the boron ...
In all asymmetric addition reactions to carbon, regioselectivity is important and often determined by Markovnikov's rule. Organoborane compounds give anti-Markovnikov additions. Electrophilic attack to an aromatic system results in electrophilic aromatic substitution rather than an addition reaction.