enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Skew-symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Skew-symmetric_matrix

    If the characteristic of the field is 2, then a skew-symmetric matrix is the same thing as a symmetric matrix. The sum of two skew-symmetric matrices is skew-symmetric. A scalar multiple of a skew-symmetric matrix is skew-symmetric. The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero.

  3. Symplectic matrix - Wikipedia

    en.wikipedia.org/wiki/Symplectic_matrix

    Furthermore, the product of two symplectic matrices is, again, a symplectic matrix. This gives the set of all symplectic matrices the structure of a group. There exists a natural manifold structure on this group which makes it into a (real or complex) Lie group called the symplectic group.

  4. Symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Symmetric_matrix

    Every real symmetric matrix is thus, up to choice of an orthonormal basis, a diagonal matrix. If and are real symmetric matrices that commute, then they can be simultaneously diagonalized by an orthogonal matrix: [2] there exists a basis of such that every element of the basis is an eigenvector for both and . Every real symmetric matrix is ...

  5. Bisymmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Bisymmetric_matrix

    Bisymmetric matrices are both symmetric centrosymmetric and symmetric persymmetric.; The product of two bisymmetric matrices is a centrosymmetric matrix. Real-valued bisymmetric matrices are precisely those symmetric matrices whose eigenvalues remain the same aside from possible sign changes following pre- or post-multiplication by the exchange matrix.

  6. Symmetry in mathematics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_mathematics

    In linear algebra, a real symmetric matrix represents a self-adjoint operator over a real inner product space. The corresponding object for a complex inner product space is a Hermitian matrix with complex-valued entries, which is equal to its conjugate transpose. Therefore, in linear algebra over the complex numbers, it is often assumed that a ...

  7. Skew-Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Skew-Hermitian_matrix

    for all indices and , where is the element in the -th row and -th column of , and the overline denotes complex conjugation.. Skew-Hermitian matrices can be understood as the complex versions of real skew-symmetric matrices, or as the matrix analogue of the purely imaginary numbers. [2]

  8. Pfaffian - Wikipedia

    en.wikipedia.org/wiki/Pfaffian

    The convention on skew-symmetric tridiagonal matrices, given below in the examples, then determines one specific polynomial, called the Pfaffian polynomial. The value of this polynomial, when applied to the entries of a skew-symmetric matrix, is called the Pfaffian of that matrix.

  9. Anticommutative property - Wikipedia

    en.wikipedia.org/wiki/Anticommutative_property

    In mathematical physics, where symmetry is of central importance, or even just in multilinear algebra these operations are mostly (multilinear with respect to some vector structures and then) called antisymmetric operations, and when they are not already of arity greater than two, extended in an associative setting to cover more than two arguments.