enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Skew-symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Skew-symmetric_matrix

    If the characteristic of the field is 2, then a skew-symmetric matrix is the same thing as a symmetric matrix. The sum of two skew-symmetric matrices is skew-symmetric. A scalar multiple of a skew-symmetric matrix is skew-symmetric. The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero.

  3. Symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Symmetric_matrix

    In linear algebra, a real symmetric matrix represents a self-adjoint operator [1] represented in an orthonormal basis over a real inner product space. The corresponding object for a complex inner product space is a Hermitian matrix with complex-valued entries, which is equal to its conjugate transpose .

  4. Kronecker product - Wikipedia

    en.wikipedia.org/wiki/Kronecker_product

    In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.

  5. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    In two dimensions, the Levi-Civita symbol is defined by: = {+ (,) = (,) (,) = (,) = The values can be arranged into a 2 × 2 antisymmetric matrix: = (). Use of the two-dimensional symbol is common in condensed matter, and in certain specialized high-energy topics like supersymmetry [1] and twistor theory, [2] where it appears in the context of 2-spinors.

  6. Geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Geometric_algebra

    Given a finite-dimensional vector space ⁠ ⁠ over a field ⁠ ⁠ with a symmetric bilinear form (the inner product, [b] e.g., the Euclidean or Lorentzian metric) ⁠: ⁠, the geometric algebra of the quadratic space ⁠ (,) ⁠ is the Clifford algebra ⁠ ⁡ (,) ⁠, an element of which is called a multivector.

  7. Antisymmetric relation - Wikipedia

    en.wikipedia.org/wiki/Antisymmetric_relation

    For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...

  8. Symplectic matrix - Wikipedia

    en.wikipedia.org/wiki/Symplectic_matrix

    Furthermore, the product of two symplectic matrices is, again, a symplectic matrix. This gives the set of all symplectic matrices the structure of a group . There exists a natural manifold structure on this group which makes it into a (real or complex) Lie group called the symplectic group .

  9. Symmetric tensor - Wikipedia

    en.wikipedia.org/wiki/Symmetric_tensor

    Over fields of characteristic zero, the graded vector space of all symmetric tensors can be naturally identified with the symmetric algebra on V. A related concept is that of the antisymmetric tensor or alternating form. Symmetric tensors occur widely in engineering, physics and mathematics.