Search results
Results from the WOW.Com Content Network
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
The reciprocal function: y = 1/x.For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola.. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1.
The graph of the function y = ƒ(x) is the set of points of the plane with coordinates (x, ... the curve x 4 + y 2 - 1 = 0 has no real points outside the square | | ...
The equation = produces a graph where the curve and line intersect at (1, 1). The curve becomes asymptotic to 0, as opposed to 1; it is, in fact, the positive section of y = 1/ x . References
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
The graphs of y = f(x) and y = f −1 (x). The dotted line is y = x. If f is invertible, then the graph of the function = is the same as the graph of the equation = (). This is identical to the equation y = f(x) that defines the graph of f, except that the roles of x and y have been reversed.
An undirected graph with three vertices and three edges. In one restricted but very common sense of the term, [1] [2] a graph is an ordered pair = (,) comprising: , a set of vertices (also called nodes or points);
For example, antiderivatives of x 2 + 1 have the form 1 / 3 x 3 + x + c. For polynomials whose coefficients come from more abstract settings (for example, if the coefficients are integers modulo some prime number p , or elements of an arbitrary ring), the formula for the derivative can still be interpreted formally, with the coefficient ...