Search results
Results from the WOW.Com Content Network
Once a bacterium recognizes the host cell receptors or nutrient-rich surroundings, it colonizes the cell surface. [3] Bacteria have various mechanisms for colonizing host tissues. For example, biofilm production allows bacteria to adhere to the host tissue surface, and it provides a protective environment ideal for bacterial growth. [4]
In epidemiology, particularly in the discussion of infectious disease dynamics (mathematical modeling of disease spread), the infectious period is the time interval during which a host (individual or patient) is infectious, i.e. capable of directly or indirectly transmitting pathogenic infectious agents or pathogens to another susceptible host ...
Host factors that may vary in a population and affect disease susceptibility can be innate or acquired. Some examples: [1] general health; psychological characteristics and attitude; nutritional state; social ties; previous exposure to the organism or related antigens; haplotype or other specific genetic differences of immune function ...
To understand the rationale behind this relation, think of A as the length/amount of time spent in the susceptible group (assuming an individual is susceptible before contracting the disease and immune afterwards) and L as the total length of time spent in the population. It thus follows that the proportion of time spent as a susceptible is A/L ...
For the full specification of the model, the arrows should be labeled with the transition rates between compartments. Between S and I, the transition rate is assumed to be (/) / = /, where is the total population, is the average number of contacts per person per time, multiplied by the probability of disease transmission in a contact between a susceptible and an infectious subject, and / is ...
The host-pathogen interaction is defined as how microbes or viruses sustain themselves within host organisms on a molecular, cellular, organismal or population level. This term is most commonly used to refer to disease-causing microorganisms although they may not cause illness in all hosts. [ 1 ]
Virulence involves pathogens extracting host nutrients for their survival, evading host immune systems by producing microbial toxins and causing immunosuppression. Optimal virulence describes a theorized equilibrium between a pathogen spreading to additional hosts to parasitize resources, while lowering their virulence to keep hosts living for ...
An infectious disease agent can be transmitted in two ways: as horizontal disease agent transmission from one individual to another in the same generation (peers in the same age group) [3] by either direct contact (licking, touching, biting), or indirect contact through air – cough or sneeze (vectors or fomites that allow the transmission of the agent causing the disease without physical ...