Search results
Results from the WOW.Com Content Network
The tangent line is said to be "going in the same direction" as the curve, and is thus the best straight-line approximation to the curve at that point. The tangent line to a point on a differentiable curve can also be thought of as a tangent line approximation, the graph of the affine function that best approximates the original function at the ...
An inversion in their tangent point with respect to a circle of appropriate radius transforms the two touching given circles into two parallel lines, and the third given circle into another circle. Thus, the solutions may be found by sliding a circle of constant radius between two parallel lines until it contacts the transformed third circle.
The tangent line to the unit circle at the point A, is perpendicular to , and intersects the y - and x-axes at points = (,) and = (,). The coordinates of these points give the values of all trigonometric functions for any arbitrary real value of θ in the following manner.
If a tangent from an external point A meets the circle at F and a secant from the external point A meets the circle at C and D respectively, then AF 2 = AC × AD (tangent–secant theorem). The angle between a chord and the tangent at one of its endpoints is equal to one half the angle subtended at the centre of the circle, on the opposite side ...
For any point outside of the circle there are two tangent points , on circle , which have equal distance to . Hence the circle o {\displaystyle o} with center P {\displaystyle P} through T 1 {\displaystyle T_{1}} passes T 2 {\displaystyle T_{2}} , too, and intersects c {\displaystyle c} orthogonal:
Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have. In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this ...
The tangent at circle point (+ , ) has the equation + =. The foot of the perpendicular from point O {\displaystyle O} on the tangent is point ( r cos φ , r sin φ ) {\displaystyle (r\cos \varphi ,r\sin \varphi )} with the still unknown distance r {\displaystyle r} to the origin O {\displaystyle O} .
A circle with 1st-order contact (tangent) A circle with 2nd-order contact (osculating) A circle with 3rd-order contact at a vertex of a curve. For each point S(t) on a smooth plane curve S, there is exactly one osculating circle, whose radius is the reciprocal of κ(t), the curvature of S at t.