enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix analytic method - Wikipedia

    en.wikipedia.org/wiki/Matrix_analytic_method

    In probability theory, the matrix analytic method is a technique to compute the stationary probability distribution of a Markov chain which has a repeating structure (after some point) and a state space which grows unboundedly in no more than one dimension.

  3. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    A Markov chain is a type of Markov process that has either a discrete state space or a discrete index set (often representing time), but the precise definition of a Markov chain varies. [6] For example, it is common to define a Markov chain as a Markov process in either discrete or continuous time with a countable state space (thus regardless ...

  4. Markov chain Monte Carlo - Wikipedia

    en.wikipedia.org/wiki/Markov_chain_Monte_Carlo

    In statistics, Markov chain Monte Carlo (MCMC) is a class of algorithms used to draw samples from a probability distribution. Given a probability distribution, one can construct a Markov chain whose elements' distribution approximates it – that is, the Markov chain's equilibrium distribution matches the target distribution. The more steps ...

  5. Discrete-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Markov_chain

    An example of a stochastic process which is not a Markov chain is the model of a machine which has states A and E and moves to A from either state with 50% chance if it has ever visited A before, and 20% chance if it has never visited A before (leaving a 50% or 80% chance that the machine moves to E).

  6. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state. An example use of a Markov chain is Markov chain Monte Carlo, which uses the Markov property to prove that a particular method for performing a random walk will sample from the joint distribution.

  7. Continuous-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_Markov_chain

    We say is Markov with initial distribution and rate matrix to mean: the trajectories of are almost surely right continuous, let be a modification of to have (everywhere) right-continuous trajectories, (()) = + almost surely (note to experts: this condition says is non-explosive), the state sequence (()) is a discrete-time Markov chain with ...

  8. Coupling from the past - Wikipedia

    en.wikipedia.org/wiki/Coupling_from_the_past

    Among Markov chain Monte Carlo (MCMC) algorithms, coupling from the past is a method for sampling from the stationary distribution of a Markov chain. Contrary to many MCMC algorithms, coupling from the past gives in principle a perfect sample from the stationary distribution. It was invented by James Propp and David Wilson in 1996.

  9. Reversible-jump Markov chain Monte Carlo - Wikipedia

    en.wikipedia.org/wiki/Reversible-jump_Markov...

    In computational statistics, reversible-jump Markov chain Monte Carlo is an extension to standard Markov chain Monte Carlo (MCMC) methodology, introduced by Peter Green, which allows simulation (the creation of samples) of the posterior distribution on spaces of varying dimensions. [1]