enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix analytic method - Wikipedia

    en.wikipedia.org/wiki/Matrix_analytic_method

    In probability theory, the matrix analytic method is a technique to compute the stationary probability distribution of a Markov chain which has a repeating structure (after some point) and a state space which grows unboundedly in no more than one dimension.

  3. PyMC - Wikipedia

    en.wikipedia.org/wiki/PyMC

    PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python. It can be used for Bayesian statistical modeling and probabilistic machine learning. PyMC performs inference based on advanced Markov chain Monte Carlo and/or variational fitting algorithms.

  4. Markov chain Monte Carlo - Wikipedia

    en.wikipedia.org/wiki/Markov_chain_Monte_Carlo

    In statistics, Markov chain Monte Carlo (MCMC) is a class of algorithms used to draw samples from a probability distribution. Given a probability distribution, one can construct a Markov chain whose elements' distribution approximates it – that is, the Markov chain's equilibrium distribution matches the target distribution. The more steps ...

  5. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    A Markov chain is a type of Markov process that has either a discrete state space or a discrete index set (often representing time), but the precise definition of a Markov chain varies. [6] For example, it is common to define a Markov chain as a Markov process in either discrete or continuous time with a countable state space (thus regardless ...

  6. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state. An example use of a Markov chain is Markov chain Monte Carlo, which uses the Markov property to prove that a particular method for performing a random walk will sample from the joint distribution.

  7. Gibbs sampling - Wikipedia

    en.wikipedia.org/wiki/Gibbs_sampling

    The Gibbs sampling algorithm generates an instance from the distribution of each variable in turn, conditional on the current values of the other variables. It can be shown that the sequence of samples constitutes a Markov chain, and the stationary distribution of that Markov chain is just the sought-after joint distribution. [3]

  8. Reversible-jump Markov chain Monte Carlo - Wikipedia

    en.wikipedia.org/wiki/Reversible-jump_Markov...

    In computational statistics, reversible-jump Markov chain Monte Carlo is an extension to standard Markov chain Monte Carlo (MCMC) methodology, introduced by Peter Green, which allows simulation (the creation of samples) of the posterior distribution on spaces of varying dimensions. [1]

  9. Continuous-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_Markov_chain

    We say is Markov with initial distribution and rate matrix to mean: the trajectories of are almost surely right continuous, let be a modification of to have (everywhere) right-continuous trajectories, (()) = + almost surely (note to experts: this condition says is non-explosive), the state sequence (()) is a discrete-time Markov chain with ...