enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    A simple harmonic oscillator is an oscillator that is neither driven nor damped.It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k.

  3. Generalized coordinates - Wikipedia

    en.wikipedia.org/wiki/Generalized_coordinates

    A degree of freedom corresponds to one quantity that changes the configuration of the system, for example the angle of a pendulum, or the arc length traversed by a bead along a wire. If it is possible to find from the constraints as many independent variables as there are degrees of freedom, these can be used as generalized coordinates. [ 5 ]

  4. Quantum harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Quantum_harmonic_oscillator

    The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point , it is one of the most important model systems in quantum mechanics.

  5. Dimensional analysis - Wikipedia

    en.wikipedia.org/wiki/Dimensional_analysis

    Consider the case of a vibrating wire of length ℓ (L) vibrating with an amplitude A (L). The wire has a linear density ρ (M/L) and is under tension s (LM/T 2), and we want to know the energy E (L 2 M/T 2) in the wire. Let π 1 and π 2 be two dimensionless products of powers of the variables chosen, given by

  6. Molecular Hamiltonian - Wikipedia

    en.wikipedia.org/wiki/Molecular_Hamiltonian

    This gives the harmonic nuclear motion Hamiltonian. Making the harmonic approximation, we can convert the Hamiltonian into a sum of uncoupled one-dimensional harmonic oscillator Hamiltonians. The one-dimensional harmonic oscillator is one of the few systems that allows an exact solution of the Schrödinger equation.

  7. Bertrand's theorem - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_theorem

    However, if some radial velocity is introduced, these orbits need not be stable (i.e., remain in orbit indefinitely) nor closed (repeatedly returning to exactly the same path). Here we show that a necessary condition for stable, exactly closed non-circular orbits is an inverse-square force or radial harmonic oscillator potential.

  8. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    In the Lagrangian, the position coordinates and velocity components are all independent variables, and derivatives of the Lagrangian are taken with respect to these separately according to the usual differentiation rules (e.g. the partial derivative of L with respect to the z velocity component of particle 2, defined by v z,2 = dz 2 /dt, is ...

  9. Symmetry in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_quantum_mechanics

    The dynamical symmetry group of the n dimensional quantum harmonic oscillator is the special unitary group SU(n). As an example, the number of infinitesimal generators of the corresponding Lie algebras of SU(2) and SU(3) are three and eight respectively.