Search results
Results from the WOW.Com Content Network
An eight-bit processor like the Intel 8008 addresses eight bits, but as this is the full width of the accumulator and other registers, this could be considered either byte-addressable or word-addressable. 32-bit x86 processors, which address memory in 8-bit units but have 32-bit general-purpose registers and can operate on 32-bit items with a ...
It is a 64-bit register-rich explicitly parallel architecture. The base data word is 64 bits, byte-addressable. The logical address space is 2 64 bytes. The architecture implements predication, speculation, and branch prediction. It uses variable-sized register windowing for parameter passing.
In theory, modern byte-addressable 64-bit computers can address 2 64 bytes (16 exbibytes), but in practice the amount of memory is limited by the CPU, the memory controller, or the printed circuit board design (e.g., number of physical memory connectors or amount of soldered-on memory).
In the simplest scheme, an address, or a numeric index, is assigned to each unit of memory in the system, where the unit is typically either a byte or a word – depending on whether the architecture is byte-addressable or word-addressable – effectively transforming all of memory into a very large array.
On most modern computers, this is an eight bit string. Because the definition of a byte is related to the number of bits composing a character, some older computers have used a different bit length for their byte. [2] In many computer architectures, the byte is the smallest addressable unit, the atom of addressability, say. For example, even ...
Hence, a processor with 64-bit memory addresses can directly access 2 64 bytes (16 exabytes or EB) of byte-addressable memory. With no further qualification, a 64-bit computer architecture generally has integer and addressing registers that are 64 bits wide, allowing direct support for 64-bit data types and addresses.
Unlike an address space, a dataspace or hiperspace contains only user data; it does not contain system control blocks or common areas. Program code cannot run in a dataspace or a hiperspace. [23] A dataspace differs from a hiperspace in that dataspaces are byte-addressable, whereas hiperspaces are page-addressable.
A one-word sequence descriptor in memory, called a "byte pointer", held the current word address within the sequence, a bit position within a word, and the size of each byte. Instructions existed to load and store bytes via this descriptor, and to increment the descriptor to point at the next byte (bytes were not split across word boundaries).