Search results
Results from the WOW.Com Content Network
Chemisorption is a kind of adsorption which involves a chemical reaction between the surface and the adsorbate. New chemical bonds are generated at the adsorbent surface. Examples include macroscopic phenomena that can be very obvious, like corrosion [clarification needed], and subtler effects associated with heterogeneous catalysis, where the catalyst and reactants are in different pha
BET model of multilayer adsorption, that is, a random distribution of sites covered by one, two, three, etc., adsorbate molecules. The concept of the theory is an extension of the Langmuir theory, which is a theory for monolayer molecular adsorption, to multilayer adsorption with the following hypotheses:
In chemisorption, molecules are adsorbed on the surface by valence bonds and only form monolayer adsorption. A direct transition from physisorption to chemisorption has been observed by attaching a CO molecule to the tip of an atomic force microscope and measuring its interaction with a single iron atom. [12]
Adsorption is present in many natural, physical, biological and chemical systems and is widely used in industrial applications such as heterogeneous catalysts, [9] [10] activated charcoal, capturing and using waste heat to provide cold water for air conditioning and other process requirements (adsorption chillers), synthetic resins, increasing ...
The primary wall becomes encrusted with and later thickened by deposits of similar substances on the inside of that wall. The encrustation of the cell wall by the material constituting the Casparian strip presumably plugs the pores that would have otherwise allowed the movement of water and nutrients via capillary action along that path. [9]
The apparent rigidity of the cell wall thus results from inflation of the cell contained within. This inflation is a result of the passive uptake of water. In plants, a secondary cell wall is a thicker additional layer of cellulose which increases wall rigidity. Additional layers may be formed by lignin in xylem cell walls, or suberin in cork ...
The unimolecular nucleophilic substitution (S N 1) reaction is a substitution reaction in organic chemistry. The Hughes-Ingold symbol of the mechanism expresses two properties—"S N " stands for " nucleophilic substitution ", and the "1" says that the rate-determining step is unimolecular .
It sometimes consists of three distinct layers - S 1, S 2 and S 3 - where the direction of the cellulose microfibrils differs between the layers. [1] The direction of the microfibrils is called microfibril angle (MFA). In the secondary cell wall of fibres of trees a low microfibril angle is found in the S2-layer, while S1 and S3-layers show a ...