Search results
Results from the WOW.Com Content Network
In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry , the dot product of the Cartesian coordinates of two vectors is widely used.
In terms of the wedge product, Lagrange's identity can be written () = ().. Hence, it can be seen as a formula which gives the length of the wedge product of two vectors, which is the area of the parallelogram they define, in terms of the dot products of the two vectors, as ‖ ‖ = () = ‖ ‖ ‖ ‖ ().
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
The generalization of the dot product formula to Riemannian manifolds is a defining property of a Riemannian connection, which differentiates a vector field to give a vector-valued 1-form. Cross product rule
Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
Since the geometric product and the exterior product are equal on orthogonal vectors, this grading can be conveniently constructed by using an orthogonal basis {, …,} . Elements of the geometric algebra that are scalar multiples of 1 {\displaystyle 1} are of grade 0 {\displaystyle 0} and are called scalars .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Frobenius inner product, the dot product of matrices considered as vectors, or, equivalently the sum of the entries of the Hadamard product; Hadamard product of two matrices of the same size, resulting in a matrix of the same size, which is the product entry-by-entry; Kronecker product or tensor product, the generalization to any size of the ...