enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...

  3. Thébault's theorem - Wikipedia

    en.wikipedia.org/wiki/Thébault's_theorem

    The quadrilateral formed by joining the centers of those four squares is a square. [1] It is a special case of van Aubel's theorem and a square version of the Napoleon's theorem. All three of these theorems are just a special case of Petr–Douglas–Neumann theorem. Tiling pattern based on Thébault's problem I

  4. Newton–Gauss line - Wikipedia

    en.wikipedia.org/wiki/Newton–Gauss_line

    Labels used in proof concerning complete quadrilateral. It is a well-known theorem that the three midpoints of the diagonals of a complete quadrilateral are collinear. [2] There are several proofs of the result based on areas [2] or wedge products [3] or, as the following proof, on Menelaus's theorem, due to Hillyer and published in 1920. [4]

  5. List of incomplete proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_incomplete_proofs

    The proof was completed by Werner Ballmann about 50 years later. Littlewood–Richardson rule. Robinson published an incomplete proof in 1938, though the gaps were not noticed for many years. The first complete proofs were given by Marcel-Paul Schützenberger in 1977 and Thomas in 1974. Class numbers of imaginary quadratic fields.

  6. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    In 2015, an anonymous Japanese woman using the pen name "aerile re" published the first known method (the method of 3 circumcenters) to construct a proof in elementary geometry for a special class of adventitious quadrangles problem. [7] [8] [9] This work solves the first of the three unsolved problems listed by Rigby in his 1978 paper. [5]

  7. Happy ending problem - Wikipedia

    en.wikipedia.org/wiki/Happy_ending_problem

    The happy ending problem: every set of five points in general position contains the vertices of a convex quadrilateral In mathematics , the " happy ending problem " (so named by Paul Erdős because it led to the marriage of George Szekeres and Esther Klein [ 1 ] ) is the following statement:

  8. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. = + In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle).

  9. Brahmagupta theorem - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta_theorem

    In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]