enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    Photo of Albert Einstein in 1921. Einstein did not write the exact formula E = mc 2 in his 1905 Annus Mirabilis paper "Does the Inertia of an object Depend Upon Its Energy Content?"; [5] rather, the paper states that if a body gives off the energy L by emitting light, its mass diminishes by ⁠ L / c 2 ⁠.

  3. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    If the energy–momentum tensor T μν is that of an electromagnetic field in free space, i.e. if the electromagnetic stress–energy tensor = (+) is used, then the Einstein field equations are called the Einstein–Maxwell equations (with cosmological constant Λ, taken to be zero in conventional relativity theory): + = (+).

  4. Annus mirabilis papers - Wikipedia

    en.wikipedia.org/wiki/Annus_Mirabilis_papers

    The Einsteinhaus on the Kramgasse in Bern, Einstein's residence at the time. Most of the papers were written in his apartment on the first floor above the street level. At the time the papers were written, Einstein did not have easy access to a complete set of scientific reference materials, although he did regularly read and contribute reviews to Annalen der Physik.

  5. Timeline of special relativity and the speed of light - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_special...

    Also, Poincaré is the first to describe the relativistic velocity-addition formula – implicitly in his publication and explicitly in his letter to Lorentz. 1905 – Albert Einstein publishes his special theory of relativity, including the mass–energy equivalence that would be later written as E = mc 2.

  6. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    Einstein Triangle. The energy–momentum relation is consistent with the familiar mass–energy relation in both its interpretations: E = mc 2 relates total energy E to the (total) relativistic mass m (alternatively denoted m rel or m tot), while E 0 = m 0 c 2 relates rest energy E 0 to (invariant) rest mass m 0.

  7. Outline of Albert Einstein - Wikipedia

    en.wikipedia.org/wiki/Outline_of_Albert_Einstein

    [3] [4] Einstein is best known by the general public for his mass–energy equivalence formula E = mc 2 (which has been dubbed "the world's most famous equation"). [5] He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect ", a pivotal step in ...

  8. Olinto De Pretto - Wikipedia

    en.wikipedia.org/wiki/Olinto_De_Pretto

    Olinto De Pretto (26 April 1857 – 16 March 1921) was an Italian industrialist and geologist from Schio, Vicenza.It is claimed by an [additional citation(s) needed] Italian mathematician, Umberto Bartocci, [1] [2] that De Pretto may have been the first person to derive the energy–mass-equivalence =, generally attributed to Albert Einstein.

  9. Equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Equivalence_principle

    The extended form by Albert Einstein requires special relativity to also hold in free fall and requires the weak equivalence to be valid everywhere. This form was a critical input for the development of the theory of general relativity. The strong form requires Einstein's form to work for stellar objects.