enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Fibonacci numbers are also strongly related to the golden ratio: Binet's formula expresses the n-th Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases.

  3. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    One can consider Fibonacci integer sequences and take them modulo n, or put differently, consider Fibonacci sequences in the ring Z/nZ. The period is a divisor of π(n). The number of occurrences of 0 per cycle is 0, 1, 2, or 4. If n is not a prime the cycles include those that are multiples of the cycles for the divisors.

  4. Wall–Sun–Sun prime - Wikipedia

    en.wikipedia.org/wiki/Wall–Sun–Sun_prime

    The k-Wall–Sun–Sun primes can be explicitly defined as primes p such that p 2 divides the k-Fibonacci number (()), where F k (n) = U n (k, −1) is a Lucas sequence of the first kind with discriminant D = k 2 + 4 and () is the Pisano period of k-Fibonacci numbers modulo p. [15]

  5. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    The semi-Fibonacci sequence (sequence A030067 in the OEIS) is defined via the same recursion for odd-indexed terms (+) = + and () =, but for even indices () = (), . The bisection A030068 of odd-indexed terms s ( n ) = a ( 2 n − 1 ) {\displaystyle s(n)=a(2n-1)} therefore verifies s ( n + 1 ) = s ( n ) + a ( n ) {\displaystyle s(n+1)=s(n)+a(n ...

  6. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    In this section we shall use the Fibonacci Box in place of the primitive triple it represents. An infinite ternary tree containing all primitive Pythagorean triples/Fibonacci Boxes can be constructed by the following procedure. [10] Consider a Fibonacci Box containing two, odd, coprime integers x and y in the right-hand column.

  7. Fibonacci - Wikipedia

    en.wikipedia.org/wiki/Fibonacci

    In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377.

  8. Lucas number - Wikipedia

    en.wikipedia.org/wiki/Lucas_number

    The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between. [3] The first few Lucas numbers are 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, ... .

  9. Liber Abaci - Wikipedia

    en.wikipedia.org/wiki/Liber_Abaci

    In reading Liber Abaci, it is helpful to understand Fibonacci's notation for rational numbers, a notation that is intermediate in form between the Egyptian fractions commonly used until that time and the vulgar fractions still in use today. [12] Fibonacci's notation differs from modern fraction notation in three key ways: