Search results
Results from the WOW.Com Content Network
There are three common naming conventions for specifying one of the two enantiomers (the absolute configuration) of a given chiral molecule: the R/S system is based on the geometry of the molecule; the (+)- and (−)- system (also written using the obsolete equivalents d- and l-) is based on its optical rotation properties; and the D/L system is based on the molecule's relationship to ...
If two enantiomers easily interconvert, the pure enantiomers may be practically impossible to separate, and only the racemic mixture is observable. This is the case, for example, of most amines with three different substituents (NRR′R″), because of the low energy barrier for nitrogen inversion .
In physics, chirality may be found in the spin of a particle, where the handedness of the object is determined by the direction in which the particle spins. [4] Not to be confused with helicity , which is the projection of the spin along the linear momentum of a subatomic particle, chirality is an intrinsic quantum mechanical property, like spin.
In organic chemistry, kinetic resolution is a means of differentiating two enantiomers in a racemic mixture.In kinetic resolution, two enantiomers react with different reaction rates in a chemical reaction with a chiral catalyst or reagent, resulting in an enantioenriched sample of the less reactive enantiomer. [1]
In chemistry, absolute configuration refers to the spatial arrangement of atoms within a molecular entity (or group) that is chiral, and its resultant stereochemical description. [1] Absolute configuration is typically relevant in organic molecules where carbon is bonded to four different substituents .
Louis Pasteur - pioneering stereochemist. Chirality can be traced back to 1812, when physicist Jean-Baptiste Biot found out about a phenomenon called "optical activity." [10] Louis Pasteur, a famous student of Biot's, made a series of observations that led him to suggest that the optical activity of some substances is caused by their molecular asymmetry, which makes nonsuperimposable mirror ...
For example, amino acids that make up the proteins in the body have the same configuration, L-absolute configuration. Because of this specificity, vital processes such as constructing proteins, rely on stereoselectivity to ensure that out of all the potential enantiomers available, the body is utilizing the correct enantiopure compound.
In biology, 19 of the 20 natural amino acids are homochiral, being L-chiral (left-handed), while sugars are D-chiral (right-handed). [1] Homochirality can also refer to enantiopure substances in which all the constituents are the same enantiomer (a right-handed or left-handed version of an atom or molecule), but some sources discourage this use ...