Search results
Results from the WOW.Com Content Network
The following is a list of Laplace transforms for many common functions of a single variable. [1] The Laplace transform is an integral transform that takes a function of a positive real variable t (often time) to a function of a complex variable s (complex angular frequency ).
In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ l ə ˈ p l ɑː s /), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain, or s-plane).
The Laplace transform is a frequency-domain approach for continuous time signals irrespective of whether the system is stable or unstable. The Laplace transform of a function f ( t ) , defined for all real numbers t ≥ 0 , is the function F ( s ) , which is a unilateral transform defined by
The Laplace–Stieltjes transform of a real-valued function g is given by a Lebesgue–Stieltjes integral of the form ()for s a complex number.As with the usual Laplace transform, one gets a slightly different transform depending on the domain of integration, and for the integral to be defined, one also needs to require that g be of bounded variation on the region of integration.
Bateman transform; Fourier transform. Short-time Fourier transform; Gabor transform; Hankel transform; Hartley transform; Hermite transform; Hilbert transform. Hilbert–Schmidt integral operator; Jacobi transform; Laguerre transform; Laplace transform. Inverse Laplace transform; Two-sided Laplace transform; Inverse two-sided Laplace transform ...
Two-sided Laplace transforms are closely related to the Fourier transform, the Mellin transform, the Z-transform and the ordinary or one-sided Laplace transform. If f ( t ) is a real- or complex-valued function of the real variable t defined for all real numbers, then the two-sided Laplace transform is defined by the integral
AOL
Let (,) be a function and a complex variable. The Laplace–Carson transform is defined as: [1] (,) = (,)The inverse Laplace–Carson transform is: (,) = + (,)where is a real-valued constant, refers to the imaginary axis, which indicates the integral is carried out along a straight line parallel to the imaginary axis lying to the right of all the singularities of the following expression: