Ad
related to: viscosity effect on flow rate of water pump
Search results
Results from the WOW.Com Content Network
Flow Rate – The flow rate is necessary to select a pump because the head characteristics of a pump will be affected by the flow rate of the system. It is necessary to importantly measure or ascertain this parameter, since the flow rate is critical in many industrial processes, especially in chemical industries.
The flow rate is an important parameter for a pump. The flow rate in a peristaltic pump is determined by many factors, such as: Tube inner diameter – higher flow rate with larger inner diameter. Pump-head outer diameter – higher flow rate with larger outer diameter. Pump-head rotational speed – higher flow rate with higher speed.
μ is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/(m·s)); Q is the volumetric flow rate, used here to measure flow instead of mean velocity according to Q = π / 4 D c 2 <v> (m 3 /s). Note that this laminar form of Darcy–Weisbach is equivalent to the Hagen–Poiseuille equation, which is analytically derived from the ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The following table gives flow rate Q such that friction loss per unit length Δp / L (SI kg / m 2 / s 2) is 0.082, 0.245, and 0.816, respectively, for a variety of nominal duct sizes. The three values chosen for friction loss correspond to, in US units inch water column per 100 feet, 0.01, .03, and 0.1.
Common uses include water, sewage, agriculture, petroleum, and petrochemical pumping. Centrifugal pumps are often chosen for their high flow rate capabilities, abrasive solution compatibility, mixing potential, as well as their relatively simple engineering. [2] A centrifugal fan is commonly used to implement an air handling unit or vacuum cleaner.
For a compressible fluid in a tube the volumetric flow rate Q(x) and the axial velocity are not constant along the tube; but the mass flow rate is constant along the tube length. The volumetric flow rate is usually expressed at the outlet pressure. As fluid is compressed or expanded, work is done and the fluid is heated or cooled.
Volume viscosity (also called bulk viscosity, or second viscosity or, dilatational viscosity) is a material property relevant for characterizing fluid flow. Common symbols are ζ , μ ′ , μ b , κ {\displaystyle \zeta ,\mu ',\mu _{\mathrm {b} },\kappa } or ξ {\displaystyle \xi } .
Ad
related to: viscosity effect on flow rate of water pump