Search results
Results from the WOW.Com Content Network
The Kronecker sum is different from the direct sum, but is also denoted by ⊕. It is defined using the Kronecker product ⊗ and normal matrix addition. If A is n -by- n , B is m -by- m and I k {\displaystyle \mathbf {I} _{k}} denotes the k -by- k identity matrix then the Kronecker sum is defined by:
Without loss of generality, we will assume that these criteria have to be maximized. The basic data related to such a problem can be written in a table containing evaluations. Each line corresponds to an action and each column corresponds to a criterion.
In statistics, multiple correspondence analysis (MCA) is a data analysis technique for nominal categorical data, used to detect and represent underlying structures in a data set. It does this by representing data as points in a low-dimensional Euclidean space .
In a value function model, the classification rules can be expressed as follows: Alternative i is assigned to group c r if and only if + < < where V is a value function (non-decreasing with respect to the criteria) and t 1 > t 2 > ... > t k−1 are thresholds defining the category limits.
In decision theory, the weighted sum model (WSM), [1] [2] also called weighted linear combination (WLC) [3] or simple additive weighting (SAW), [4] is the best known and simplest multi-criteria decision analysis (MCDA) / multi-criteria decision making method for evaluating a number of alternatives in terms of a number of decision criteria.
The term decision matrix is used to describe a multiple-criteria decision analysis (MCDA) problem. An MCDA problem, where there are M alternative options and each needs to be assessed on N criteria, can be described by the decision matrix which has N rows and M columns, or M × N elements, as shown in the following table.
“Here is a useful formula for determining how many to keep: (Number of people who use mug/water bottle ) × (number of mugs they use a day) then X that by (one + the number of days between ...
The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multi-criteria decision analysis method, which was originally developed by Ching-Lai Hwang and Yoon in 1981 [1] with further developments by Yoon in 1987, [2] and Hwang, Lai and Liu in 1993. [3]