Ads
related to: geometry counterexamples examples
Search results
Results from the WOW.Com Content Network
In logic a counterexample disproves the generalization, and does so rigorously in the fields of mathematics and philosophy. [1] For example, the fact that "student John Smith is not lazy" is a counterexample to the generalization "students are lazy", and both a counterexample to, and disproof of, the universal quantification "all students are ...
Counterexamples in Topology (1970, 2nd ed. 1978) is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr. In the process of working on problems like the metrization problem , topologists (including Steen and Seebach) have defined a wide variety of topological properties .
The key to this counter-example is what is now known as Tutte's fragment, shown on the right. If this fragment is part of a larger graph, then any Hamiltonian cycle through the graph must go in or out of the top vertex (and either one of the lower ones). It cannot go in one lower vertex and out the other.
Appel and Haken's approach started by showing that there is a particular set of 1,936 maps, each of which cannot be part of a smallest-sized counterexample to the four color theorem (i.e., if they did appear, one could make a smaller counter-example).
geometric topology: David Hilbert and Paul Althaus Smith: 219 Hodge conjecture: algebraic geometry: W. V. D. Hodge: 2490 Homological conjectures in commutative algebra: commutative algebra: n/a: Hopf conjectures: geometry: Heinz Hopf: 476 Ibragimov–Iosifescu conjecture for φ-mixing sequences: probability theory: Ildar Ibragimov, ro:Marius ...
Some examples of non-paracompact manifolds in higher dimensions include the Prüfer manifold, products of any non-paracompact manifold with any non-empty manifold, the ball of long radius, and so on. The bagpipe theorem shows that there are 2 ℵ 1 {\displaystyle 2^{\aleph _{1}}} isomorphism classes of non-paracompact surfaces, even when a ...
This is a list of useful examples in general topology, a field of mathematics. Alexandrov topology; Cantor space; Co-kappa topology Cocountable topology; Cofinite topology; Compact-open topology; Compactification; Discrete topology; Double-pointed cofinite topology; Extended real number line; Finite topological space; Hawaiian earring; Hilbert cube
One of many examples from algebraic geometry in the first half of the 20th century: Severi (1946) claimed that a degree-n surface in 3-dimensional projective space has at most (n+2 3 )−4 nodes, B. Segre pointed out that this was wrong; for example, for degree 6 the maximum number of nodes is 65, achieved by the Barth sextic , which is more ...
Ads
related to: geometry counterexamples examples