Search results
Results from the WOW.Com Content Network
The midpoint potential of the NAD + /NADH redox pair is −0.32 volts, which makes NADH a moderately strong reducing agent. [7] The reaction is easily reversible, when NADH reduces another molecule and is re-oxidized to NAD +. This means the coenzyme can continuously cycle between the NAD + and NADH forms without being consumed. [5]
NADH dehydrogenase → plastoquinol → b 6 f → cyt c 6 → cyt aa 3 → O 2. where the mobile electron carriers are plastoquinol and cytochrome c 6, while the proton pumps are NADH dehydrogenase, cyt b 6 f and cytochrome aa 3 (member of the COX3 family). Cyanobacteria are the only bacteria that produce oxygen during photosynthesis.
Nicotinamide adenine dinucleotide phosphate, abbreviated NADP [1] [2] or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid syntheses, which require NADPH as a reducing agent ('hydrogen source').
NAD + is the oxidizing agent in glycolysis, as it is in most other energy yielding metabolic reactions (e.g. beta-oxidation of fatty acids, and during the citric acid cycle). The NADH thus produced is primarily used to ultimately transfer electrons to O 2 to produce water, or, when O 2 is not available, to produce compounds such as lactate or ...
The net gain from one cycle is 3 NADH and 1 FADH 2 as hydrogen (proton plus electron) carrying compounds and 1 high-energy GTP, which may subsequently be used to produce ATP. Thus, the total yield from 1 glucose molecule (2 pyruvate molecules) is 6 NADH, 2 FADH 2 , and 2 ATP.
Photosynthetic carbohydrate synthesis in plants and certain bacteria is an anabolic process that produces glucose, cellulose, starch, lipids, and proteins from CO 2. [6] It uses the energy produced from the light-driven reactions of photosynthesis, and creates the precursors to these large molecules via carbon assimilation in the photosynthetic ...
When sufficient oxygen is not present in the muscle cells for further oxidation of pyruvate and NADH produced in glycolysis, NAD+ is regenerated from NADH by reduction of pyruvate to lactate. [4] Lactate is converted to pyruvate by the enzyme lactate dehydrogenase. [3] The standard free energy change of the reaction is -25.1 kJ/mol. [6]
The energy from the acetyl group, in the form of electrons, is used to reduce NAD+ and FAD to NADH and FADH 2, respectively. NADH and FADH 2 contain the stored energy harnessed from the initial glucose molecule and is used in the electron transport chain where the bulk of the ATP is produced. [1]