enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    Glycolysis is the metabolic pathway that converts glucose (C 6 H 12 O 6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). [1]

  3. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    The citric acid cycle is also called the Krebs cycle or the tricarboxylic acid cycle. When oxygen is present, acetyl-CoA is produced from the pyruvate molecules created from glycolysis. Once acetyl-CoA is formed, aerobic or anaerobic respiration can occur. When oxygen is present, the mitochondria will undergo aerobic respiration which leads to ...

  4. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    The production of ATP is achieved through the oxidation of glucose molecules. In oxidation, the electrons are stripped from a glucose molecule to reduce NAD+ and FAD. NAD+ and FAD possess a high energy potential to drive the production of ATP in the electron transport chain. ATP production occurs in the mitochondria of the cell.

  5. Dihydronicotinamide mononucleotide - Wikipedia

    en.wikipedia.org/wiki/Dihydronicotinamide...

    NMNH (Dihydronicotinamide mononucleotide), also known as reduced nicotinamide mononucleotide. [1] Both NMNH and NMN increase NAD+ levels in the body. [1] NAD+ is a universal coenzyme that plays vital roles in nearly all living organisms functioning in various biological processes such as metabolism, cell signaling, gene regulation, and DNA repair.

  6. Metabolic pathway - Wikipedia

    en.wikipedia.org/wiki/Metabolic_pathway

    The glyoxylate shunt pathway is an alternative to the tricarboxylic acid (TCA) cycle, for it redirects the pathway of TCA to prevent full oxidation of carbon compounds, and to preserve high energy carbon sources as future energy sources. This pathway occurs only in plants and bacteria and transpires in the absence of glucose molecules. [13]

  7. Anaerobic glycolysis - Wikipedia

    en.wikipedia.org/wiki/Anaerobic_glycolysis

    When sufficient oxygen is not present in the muscle cells for further oxidation of pyruvate and NADH produced in glycolysis, NAD+ is regenerated from NADH by reduction of pyruvate to lactate. [4] Lactate is converted to pyruvate by the enzyme lactate dehydrogenase. [3] The standard free energy change of the reaction is -25.1 kJ/mol. [6]

  8. Lactic acid fermentation - Wikipedia

    en.wikipedia.org/wiki/Lactic_acid_fermentation

    Subsequently, NAD+ molecules are converted into 2 NADH and additional phosphate groups are attached to the carbons. Then ADP comes and takes the phosphates, creating 2 ATP molecules. The pyruvate is turned into 2 lactate molecules, which convert NADH back to NAD+. The process then repeats, starting with another glucose molecule.

  9. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    NADH dehydrogenase → plastoquinol → b 6 f → cyt c 6 → cyt aa 3 → O 2. where the mobile electron carriers are plastoquinol and cytochrome c 6, while the proton pumps are NADH dehydrogenase, cyt b 6 f and cytochrome aa 3 (member of the COX3 family). Cyanobacteria are the only bacteria that produce oxygen during photosynthesis.