Search results
Results from the WOW.Com Content Network
The general graph Steiner tree problem can be approximated by computing the minimum spanning tree of the subgraph of the metric closure of the graph induced by the terminal vertices, as first published in 1981 by Kou et al. [18] The metric closure of a graph G is the complete graph in which each edge is weighted by the shortest path distance ...
Minor testing (checking whether an input graph contains an input graph as a minor); the same holds with topological minors; Steiner tree, or Minimum spanning tree for a subset of the vertices of a graph. [2] (The minimum spanning tree for an entire graph is solvable in polynomial time.) Modularity maximization [5]
The main motivation for studying the Hanan grid stems from the fact that it is known to contain a minimum length rectilinear Steiner tree for S. [1] It is named after Maurice Hanan, who was first [ 2 ] to investigate the rectilinear Steiner minimum tree and introduced this graph.
Download as PDF; Printable version; In other projects ... Pages in category "Trees (graph theory)" ... Rectilinear Steiner tree; Recursive tree; S.
The RSMT is an NP-hard problem, and as with other NP-hard problems, common approaches to tackle it are approximate algorithms, heuristic algorithms, and separation of efficiently solvable special cases. An overview of the approaches to the problem may be found in the 1992 book by Hwang, Richards and Winter, The Steiner Tree Problem. [3]
Almost every problem associated with routing is known to be intractable. The simplest routing problem, called the Steiner tree problem, of finding the shortest route for one net in one layer with no obstacles and no design rules is known to be NP-complete , both in the case where all angles are allowed or if routing is restricted to only ...
Download as PDF; Printable version; ... Pages in category "Computational problems in graph theory" ... Spanning tree; Steiner tree problem;
Steiner tree problem, an algorithmic problem of finding extra Steiner points to add to a point set to reduce the cost of connecting the points . The median of three vertices in a median graph, the solution to the Steiner tree problem for those three vertices