Search results
Results from the WOW.Com Content Network
Binary search Visualization of the binary search algorithm where 7 is the target value Class Search algorithm Data structure Array Worst-case performance O (log n) Best-case performance O (1) Average performance O (log n) Worst-case space complexity O (1) Optimal Yes In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search ...
In the theory of optimal binary search trees, the interleave lower bound is a lower bound on the number of operations required by a Binary Search Tree (BST) to execute a given sequence of accesses. Several variants of this lower bound have been proven. [1] [2] [3] This article is based on a variation of the first Wilber's bound. [4]
Using LCP-LR during binary search helps accelerate the search procedure from () to (+ ). We can use two binary searches to determine the left and right end of the match range for P {\displaystyle P} , and the length of the match range corresponds with the number of occurrences for P.
A schematic picture of the skip list data structure. Each box with an arrow represents a pointer and a row is a linked list giving a sparse subsequence; the numbered boxes (in yellow) at the bottom represent the ordered data sequence.
Abstractly, a dichotomic search can be viewed as following edges of an implicit binary tree structure until it reaches a leaf (a goal or final state). This creates a theoretical tradeoff between the number of possible states and the running time: given k comparisons, the algorithm can only reach O(2 k ) possible states and/or possible goals.
Interpolation search resembles the method by which people search a telephone directory for a name (the key value by which the book's entries are ordered): in each step the algorithm calculates where in the remaining search space the sought item might be, based on the key values at the bounds of the search space and the value of the sought key ...
A best-first branch and bound algorithm can be obtained by using a priority queue that sorts nodes on their lower bound. [3] Examples of best-first search algorithms with this premise are Dijkstra's algorithm and its descendant A* search. The depth-first variant is recommended when no good heuristic is available for producing an initial ...
A Fenwick tree or binary indexed tree (BIT) is a data structure that stores an array of values and can efficiently compute prefix sums of the values and update the values. It also supports an efficient rank-search operation for finding the longest prefix whose sum is no more than a specified value.