Search results
Results from the WOW.Com Content Network
The definition of the thickness of the diffusion layer is arbitrary because the concentration approaches asymptotically the value in the bulk solution". [1] The diffusion layer thus depends on the diffusion coefficient (D) of the analyte and, for voltammetric measurements, on the scan rate (V/s).
The turbulent Schmidt number is commonly used in turbulence research and is defined as: [3] = where: is the eddy viscosity in units of (m 2 /s); is the eddy diffusivity (m 2 /s).; The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar).
D im is the mixture-averaged diffusion coefficient, c p is the specific heat capacity at constant pressure. In the field of fluid mechanics, many sources define the Lewis number to be the inverse of the above definition. [3] [4] The Lewis number can also be expressed in terms of the Prandtl number (Pr) and the Schmidt number (Sc): [5]
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
The Sherwood number (Sh) (also called the mass transfer Nusselt number) is a dimensionless number used in mass-transfer operation. It represents the ratio of the total mass transfer rate (convection + diffusion) to the rate of diffusive mass transport, [1] and is named in honor of Thomas Kilgore Sherwood.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The Prandtl number (Pr) or Prandtl group is a dimensionless number, named after the German physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity to thermal diffusivity. [1] The Prandtl number is given as:
Definition of diffusion flux ... (the ratio of the particle's terminal drift velocity ... A semipermeable membrane is a thin layer of material that contains holes of ...