enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reynolds equation - Wikipedia

    en.wikipedia.org/wiki/Reynolds_Equation

    The equation can either be used with consistent units or nondimensionalized. The Reynolds Equation assumes: The fluid is Newtonian. Fluid viscous forces dominate over fluid inertia forces. This is the principle of the Reynolds number. Fluid body forces are negligible.

  3. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    The Brezina equation. The Reynolds number can be defined for several different situations where a fluid is in relative motion to a surface. [n 1] These definitions generally include the fluid properties of density and viscosity, plus a velocity and a characteristic length or characteristic dimension (L in the above equation). This dimension is ...

  4. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.

  5. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  6. Lubrication theory - Wikipedia

    en.wikipedia.org/wiki/Lubrication_theory

    The equations show, for example, that pressure variations across the gap are small, and that those along the gap are proportional to the fluid viscosity. A more general formulation of the lubrication approximation would include a third dimension, and the resulting differential equation is known as the Reynolds equation.

  7. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  8. Hydrodynamic stability - Wikipedia

    en.wikipedia.org/wiki/Hydrodynamic_stability

    A key tool used to determine the stability of a flow is the Reynolds number (Re), first put forward by George Gabriel Stokes at the start of the 1850s. Associated with Osborne Reynolds who further developed the idea in the early 1880s, this dimensionless number gives the ratio of inertial terms and viscous terms. [4]

  9. Eddy (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Eddy_(fluid_dynamics)

    Reynolds Experiment (1883). Osborne Reynolds standing beside his apparatus. In 1883, scientist Osborne Reynolds conducted a fluid dynamics experiment involving water and dye, where he adjusted the velocities of the fluids and observed the transition from laminar to turbulent flow, characterized by the formation of eddies and vortices. [5]