Search results
Results from the WOW.Com Content Network
In mathematics, inverse mapping theorem may refer to: the inverse function theorem on the existence of local inverses for functions with non-singular derivatives the bounded inverse theorem on the boundedness of the inverse for invertible bounded linear operators on Banach spaces
In differential geometry, the inverse function theorem is used to show that the pre-image of a regular value under a smooth map is a manifold. [10] Indeed, let f : U → R r {\displaystyle f:U\to \mathbb {R} ^{r}} be such a smooth map from an open subset of R n {\displaystyle \mathbb {R} ^{n}} (since the result is local, there is no loss of ...
A map is a local diffeomorphism if and only if it is a smooth immersion (smooth local embedding) and an open map. The inverse function theorem implies that a smooth map f : X → Y {\displaystyle f:X\to Y} is a local diffeomorphism if and only if the derivative D f x : T x X → T f ( x ) Y {\displaystyle Df_{x}:T_{x}X\to T_{f(x)}Y} is a linear ...
In the mathematical field of analysis, the Nash–Moser theorem, discovered by mathematician John Forbes Nash and named for him and Jürgen Moser, is a generalization of the inverse function theorem on Banach spaces to settings when the required solution mapping for the linearized problem is not bounded.
In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem [1] (named after Stefan Banach and Juliusz Schauder), is a fundamental result that states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map.
P ' is the inverse of P with respect to the circle. To invert a number in arithmetic usually means to take its reciprocal. A closely related idea in geometry is that of "inverting" a point. In the plane, the inverse of a point P with respect to a reference circle (Ø) with center O and radius r is a point P ', lying on the ray from O through P ...
The inverse function theorem can be generalized to functions of several variables. Specifically, a continuously differentiable multivariable function f : R n → R n is invertible in a neighborhood of a point p as long as the Jacobian matrix of f at p is invertible .
For / one gets the inverse mapping defined by . In Euclidean geometry homotheties are the similarities that fix a point and either preserve (if k > 0 {\displaystyle k>0} ) or reverse (if k < 0 {\displaystyle k<0} ) the direction of all vectors.