Search results
Results from the WOW.Com Content Network
The third essential description of a curve is the parametric one, where the x- and y-coordinates of curve points are represented by two functions x(t), y(t) both of whose functional forms are explicitly stated, and which are dependent on a common parameter . Examples of implicit curves include:
Two curves in the plane intersecting at a point p are said to have: 0th-order contact if the curves have a simple crossing (not tangent). 1st-order contact if the two curves are tangent. 2nd-order contact if the curvatures of the curves are equal. Such curves are said to be osculating. 3rd-order contact if the derivatives of the curvature are ...
Thus the critical points of a cubic function f defined by f(x) = ax 3 + bx 2 + cx + d, occur at values of x such that the derivative + + = of the cubic function is zero. The solutions of this equation are the x-values of the critical points and are given, using the quadratic formula, by
A point on no tangent line is said to be an interior point (or inner point) of the conic, while a point on two tangent lines is an exterior point (or outer point). All the conic sections share a reflection property that can be stated as: All mirrors in the shape of a non-degenerate conic section reflect light coming from or going toward one ...
A stronger form of the circle packing theorem asserts that any polyhedral graph and its dual graph can be represented by two circle packings, such that the two tangent circles representing a primal graph edge and the two tangent circles representing the dual of the same edge always have their tangencies at right angles to each other at the same ...
For solving the cubic equation x 3 + m 2 x = n where n > 0, Omar Khayyám constructed the parabola y = x 2 /m, the circle that has as a diameter the line segment [0, n/m 2] on the positive x-axis, and a vertical line through the point where the circle and the parabola intersect above the x-axis.
The 2nd Brocard cubic is the locus of a point X for which the pole of the line XX* in the circumconic through X and X* lies on the line of the circumcenter and the symmedian point (i.e., the Brocard axis). The cubic passes through the centroid, symmedian point, both Fermat points, both isodynamic points, the Parry point, other triangle centers ...
Set of affine points of elliptic curve y 2 = x 3 − x over finite field F 89. The set of points E(F q) is a finite abelian group. It is always cyclic or the product of two cyclic groups. For example, [17] the curve defined by =