enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lattice energy - Wikipedia

    en.wikipedia.org/wiki/Lattice_energy

    The lattice energy of an ionic compound depends strongly upon the charges of the ions that comprise the solid, which must attract or repel one another via Coulomb's Law. More subtly, the relative and absolute sizes of the ions influence Δ H l a t t i c e {\displaystyle \Delta H_{lattice}} .

  3. Laue equations - Wikipedia

    en.wikipedia.org/wiki/Laue_equations

    Laue equation. In crystallography and solid state physics, the Laue equations relate incoming waves to outgoing waves in the process of elastic scattering, where the photon energy or light temporal frequency does not change upon scattering by a crystal lattice.

  4. Heat transfer physics - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_physics

    The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...

  5. Born–Landé equation - Wikipedia

    en.wikipedia.org/wiki/Born–Landé_equation

    The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound.In 1918 [1] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.

  6. Electronic specific heat - Wikipedia

    en.wikipedia.org/wiki/Electronic_specific_heat

    Although the Drude model was fairly successful in describing the electron motion within metals, it has some erroneous aspects: it predicts the Hall coefficient with the wrong sign compared to experimental measurements, the assumed additional electronic heat capacity to the lattice heat capacity, namely per electron at elevated temperatures, is also inconsistent with experimental values, since ...

  7. Particle in a one-dimensional lattice - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_one...

    The energy of such a state can lie either at the band edge or within the band gap. If the energy is within the band gap, the state is a surface state localized at one end of the lattice, but if the energy is at the band edge, the state is delocalized across the lattice.

  8. Born–Mayer equation - Wikipedia

    en.wikipedia.org/wiki/Born–Mayer_equation

    The Born–Mayer equation is an equation that is used to calculate the lattice energy of a crystalline ionic compound.It is a refinement of the Born–Landé equation by using an improved repulsion term.

  9. Kapustinskii equation - Wikipedia

    en.wikipedia.org/wiki/Kapustinskii_equation

    The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known.