Search results
Results from the WOW.Com Content Network
Similarly, the y intercepts are found by setting x equal to 0 in the equation of the curve and solving for y. Determine the symmetry of the curve. If the exponent of x is always even in the equation of the curve then the y-axis is an axis of symmetry for the curve.
In analytic geometry, a truncus is a curve in the Cartesian plane consisting of all points (x,y) satisfying an equation of the form A mathematical graph of the basic truncus formula, marked in blue, with domain and range both restricted to [-5, 5]. = (+) + where a, b, and c are given constants.
The point E is an arbitrary point on the parabola. The focus is F, the vertex is A (the origin), and the line FA is the axis of symmetry. The line EC is parallel to the axis of symmetry, intersects the x axis at D and intersects the directrix at C. The point B is the midpoint of the line segment FC.
A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating and , which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]
To find the angle of a rotation, once the axis of the rotation is known, select a vector v perpendicular to the axis. Then the angle of the rotation is the angle between v and R v . A more direct method, however, is to simply calculate the trace : the sum of the diagonal elements of the rotation matrix.
Graph of y = ax 2 + bx + c, where a and the discriminant b 2 − 4ac are positive, with. Roots and y-intercept in red; Vertex and axis of symmetry in blue; Focus and directrix in pink; Visualisation of the complex roots of y = ax 2 + bx + c: the parabola is rotated 180° about its vertex (orange).
A Line symmetry of a system of differential equations is a continuous symmetry of the system of differential equations. Knowledge of a Line symmetry can be used to simplify an ordinary differential equation through reduction of order. [8] For ordinary differential equations, knowledge of an appropriate set of Lie symmetries allows one to ...
Burnside's lemma can compute the number of rotationally distinct colourings of the faces of a cube using three colours.. Let X be the set of 3 6 possible face color combinations that can be applied to a fixed cube, and let the rotation group G of the cube act on X by moving the colored faces: two colorings in X belong to the same orbit precisely when one is a rotation of the other.