Search results
Results from the WOW.Com Content Network
Knowledge representation and reasoning (KRR, KR&R, or KR²) is a field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks, such as diagnosing a medical condition or having a natural-language dialog.
Multiple different approaches to represent knowledge and then reason with those representations have been investigated. Below is a quick overview of approaches to knowledge representation and automated reasoning.
Description logics (DL) are a family of formal knowledge representation languages. Many DLs are more expressive than propositional logic but less expressive than first-order logic . In contrast to the latter, the core reasoning problems for DLs are (usually) decidable , and efficient decision procedures have been designed and implemented for ...
A frame language is a technology used for knowledge representation in artificial intelligence. They are similar to class hierarchies in object-oriented languages although their fundamental design goals are different. Frames are focused on explicit and intuitive representation of knowledge whereas objects focus on encapsulation and information ...
Class (knowledge representation) Closed-world assumption; Cognitive categorization; Cognitive map; Colon classification; Completeness (knowledge bases) Composite Capability/Preference Profiles; Composite portrait; Computer Science Ontology; Concept map; Concepticon; Conceptual graph; Conceptualization (information science) Consistency ...
All the different knowledge graph embedding models follow roughly the same procedure to learn the semantic meaning of the facts. [7] First of all, to learn an embedded representation of a knowledge graph, the embedding vectors of the entities and relations are initialized to random values. [7]
Other approaches include the use of automated theorem proving, logic programming, blackboard systems, and term rewriting systems such as Constraint Handling Rules (CHR). These more formal approaches are covered in detail in the Wikipedia article on knowledge representation and reasoning.
A semantic network is used when one has knowledge that is best understood as a set of concepts that are related to one another. Most semantic networks are cognitively based. They consist of arcs (spokes) and nodes (hubs) which can be organized into a taxonomic hierarchy. Different semantic networks can also be connected by bridge nodes.