enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    Each value of λ corresponds to one or more eigenfunctions. If multiple linearly independent eigenfunctions have the same eigenvalue, the eigenvalue is said to be degenerate and the maximum number of linearly independent eigenfunctions associated with the same eigenvalue is the eigenvalue's degree of degeneracy or geometric multiplicity. [4] [5]

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Using the Leibniz formula for determinants, the left-hand side of equation is a polynomial function of the variable λ and the degree of this polynomial is n, the order of the matrix A. Its coefficients depend on the entries of A , except that its term of degree n is always (−1) n λ n .

  4. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    These formulas are used to derive the expressions for eigenfunctions of Laplacian in case of separation of variables, as well as to find eigenvalues and eigenvectors of multidimensional discrete Laplacian on a regular grid, which is presented as a Kronecker sum of discrete Laplacians in one-dimension.

  5. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  6. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    For a quantum particle with a wave function | moving in a one-dimensional potential (), the time-independent Schrödinger equation can be written as + = Since this is an ordinary differential equation, there are two independent eigenfunctions for a given energy at most, so that the degree of degeneracy never exceeds two.

  7. Angular momentum operator - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_operator

    Being an observable, its eigenfunctions represent the distinguishable physical states of a system's angular momentum, and the corresponding eigenvalues the observable experimental values. When applied to a mathematical representation of the state of a system, yields the same state multiplied by its angular momentum value if the state is an ...

  8. Kosambi–Karhunen–Loève theorem - Wikipedia

    en.wikipedia.org/wiki/Kosambi–Karhunen–Loève...

    By Mercer's theorem, there consequently exists a set λ k, e k (t) of eigenvalues and eigenfunctions of T K X forming an orthonormal basis of L 2 ([a,b]), and K X can be expressed as (,) = = () The process X t can be expanded in terms of the eigenfunctions e k as:

  9. Mercer's theorem - Wikipedia

    en.wikipedia.org/wiki/Mercer's_theorem

    Since T K is a linear operator, we can talk about eigenvalues and eigenfunctions of T K. Theorem. Suppose K is a continuous symmetric positive-definite kernel. Then there is an orthonormal basis {e i} i of L 2 [a, b] consisting of eigenfunctions of T K such that the corresponding sequence of eigenvalues {λ i} i is nonnegative.