Search results
Results from the WOW.Com Content Network
It contains the renal corpuscles and the renal tubules except for parts of the loop of Henle which descend into the renal medulla. It also contains blood vessels and cortical collecting ducts. The renal cortex is the part of the kidney where ultrafiltration occurs. [2] Erythropoietin is produced in the renal cortex. [3]
As the filtrate descends deeper into the hypertonic interstitium of the renal medulla, water flows freely out of the descending limb by osmosis until the tonicity of the filtrate and interstitium equilibrate. The hypertonicity of the medulla (and therefore concentration of urine) is determined in part by the size of the loops of Henle.
The 300 mOsm/L fluid from the loop loses water to the higher concentration outside the loop and increases in tonicity until it reaches its maximum at the bottom of the loop. This area represents the highest concentration in the nephron, but the collecting duct can reach this same tonicity with maximum ADH [clarification needed] effect. [3]
The DCT is lined with simple cuboidal cells, the distal convoluted tubule cells, that are shorter than those of the proximal convoluted tubule (PCT). The lumen appears larger in the PCT than the DCT lumen because the PCT has a brush border (microvilli).
The renal corpuscle is a blood-filtering part of the nephron and is located in the cortex. The renal tubule extends from the renal corpuscle to the medulla into the loop of Henle and then returns back to the cortex. Finally, the renal tubule flows with its distal end into its collecting duct, which is common to several nephrons.
The initial filtering portion of a nephron is the renal corpuscle, which is located in the cortex. This is followed by a renal tubule that passes from the cortex deep into the medullary pyramids. Part of the renal cortex, a medullary ray is a collection of renal tubules that drain into a single collecting duct. [citation needed]
The proximal tubule is the segment of the nephron in kidneys which begins from the renal pole of the Bowman's capsule to the beginning of loop of Henle.At this location, the glomerular parietal epithelial cells (PECs) lining bowman’s capsule abruptly transition to proximal tubule epithelial cells (PTECs).
The kidney is responsible for about half of the total gluconeogenesis in fasting humans. The regulation of glucose production in the kidney is achieved by action of insulin, catecholamines and other hormones. [14] Renal gluconeogenesis takes place in the renal cortex. The renal medulla is incapable of producing glucose due to absence of ...