Search results
Results from the WOW.Com Content Network
In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition
The strength (naivety) of this assumption is what gives the classifier its name. These classifiers are among the simplest Bayesian network models. [1] Naive Bayes classifiers are highly scalable, requiring a number of parameters linear in the number of variables (features/predictors) in a learning problem.
Bayesian learning mechanisms are probabilistic causal models [1] used in computer science to research the fundamental underpinnings of machine learning, and in cognitive neuroscience, to model conceptual development. [2] [3]
In terms of machine learning and pattern classification, the labels of a set of random observations can be divided into 2 or more classes. Each observation is called an instance and the class it belongs to is the label .
Bayesian inference (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available.
Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. [1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the ...
The Bayesian one-shot learning algorithm represents the foreground and background of images as parametrized by a mixture of constellation models. [12] During the learning phase, the parameters of these models are learned using a conjugate density parameter posterior and Variational Bayesian Expectation–Maximization (VBEM). [13]
A probabilistic neural network (PNN) [1] is a feedforward neural network, which is widely used in classification and pattern recognition problems.In the PNN algorithm, the parent probability distribution function (PDF) of each class is approximated by a Parzen window and a non-parametric function.