Search results
Results from the WOW.Com Content Network
The SI unit of molar absorption coefficient is the square metre per mole (m 2 /mol), but in practice, quantities are usually expressed in terms of M −1 ⋅cm −1 or L⋅mol −1 ⋅cm −1 (the latter two units are both equal to 0.1 m 2 /mol).
absorption coefficient is essentially (but not quite always) synonymous with attenuation coefficient; see attenuation coefficient for details; molar absorption coefficient or molar extinction coefficient , also called molar absorptivity , is the attenuation coefficient divided by molarity (and usually multiplied by ln(10), i.e., decadic); see ...
ε is the molar attenuation coefficient of that material, and; c(z) is the molar concentration of that material at z. If c(z) is uniform along the path, the relation becomes =. The use of the term "molar absorptivity" for molar attenuation coefficient is discouraged. [1]
The density of quartz is around 2.65 g/cm 3 but the dry bulk density of a soil can be less than half that value. Most soils have a dry bulk density between 1.0 and 1.6 g/cm 3 but organic soil and some porous clays may have a dry bulk density well below 1 g/cm 3 .
The mass attenuation coefficient (also called "mass extinction coefficient"), which is the absorption coefficient divided by density; The absorption cross section and scattering cross-section, related closely to the absorption and attenuation coefficients, respectively "Extinction" in astronomy, which is equivalent to the attenuation coefficient
Calculation of the true sorptivity required numerical iterative procedures dependent on soil water content and diffusivity. John R. Philip (1969) showed that sorptivity can be determined from horizontal infiltration where water flow is mostly controlled by capillary absorption: I = S t {\displaystyle I=S{\sqrt {t}}} where S is sorptivity and I ...
Soil bulk density is equal to the dry mass of the soil divided by the volume of the soil; i.e., it includes air space and organic materials of the soil volume. Thereby soil bulk density is always less than soil particle density and is a good indicator of soil compaction. [47] The soil bulk density of cultivated loam is about 1.1 to 1.4 g/cm 3 ...
Consolidation is the process in which reduction in volume takes place by the gradual expulsion or absorption of water under long-term static loads. [3] When stress is applied to a soil, it causes the soil particles to pack together more tightly. When this occurs in a soil that is saturated with water, water will be squeezed out of the soil.