Search results
Results from the WOW.Com Content Network
The 5 Platonic solids are called a tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron with 4, 6, 8, 12, and 20 sides respectively. The regular hexahedron is a cube . Table of polyhedra
Regular tetrahedra can be stacked face-to-face in a chiral aperiodic chain called the Boerdijk–Coxeter helix. In four dimensions , all the convex regular 4-polytopes with tetrahedral cells (the 5-cell , 16-cell and 600-cell ) can be constructed as tilings of the 3-sphere by these chains, which become periodic in the three-dimensional space of ...
There is a third topological polyhedral figure with 5 faces, degenerate as a polyhedron: it exists as a spherical tiling of digon faces, called a pentagonal hosohedron with Schläfli symbol {2,5}. It has 2 ( antipodal point ) vertices, 5 edges, and 5 digonal faces.
Face, a 2-dimensional element; Cell, a 3-dimensional element; Hypercell or Teron, a 4-dimensional element; Facet, an (n-1)-dimensional element; Ridge, an (n-2)-dimensional element; Peak, an (n-3)-dimensional element; For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak.
Alternatively, if you expand each of five cubes by moving the faces away from the origin the right amount and rotating each of the five 72° around so they are equidistant from each other, without changing the orientation or size of the faces, and patch the pentagonal and triangular holes in the result, you get a rhombicosidodecahedron ...
At each vertex of the solid, the total, among the adjacent faces, of the angles between their respective adjacent sides must be strictly less than 360°. The amount less than 360° is called an angle defect. Regular polygons of six or more sides have only angles of 120° or more, so the common face must be the triangle, square, or pentagon. For ...
[4] [5] The Goldberg–Coxeter construction is an expansion of the concepts underlying geodesic polyhedra. 3 constructions for a {3,5+} 6,0 An icosahedron and related symmetry polyhedra can be used to define a high geodesic polyhedron by dividing triangular faces into smaller triangles, and projecting all the new vertices onto a sphere.
Vertex configurations [4] Faces [5] Edges [5] Vertices [5] Point group [6] Truncated tetrahedron: 3.6.6: 4 triangles 4 hexagons: 18 12 T d: Cuboctahedron: 3.4.3.4: 8 triangles 6 squares: 24 12 O h: Truncated cube: 3.8.8: 8 triangles 6 octagons: 36 24 O h: Truncated octahedron: 4.6.6: 6 squares 8 hexagons 36 24 O h: Rhombicuboctahedron: 3.4.4.4 ...