Search results
Results from the WOW.Com Content Network
A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.
Given its domain and its codomain, a function is uniquely represented by the set of all pairs (x, f (x)), called the graph of the function, a popular means of illustrating the function. [ note 1 ] [ 4 ] When the domain and the codomain are sets of real numbers, each such pair may be thought of as the Cartesian coordinates of a point in the plane.
Given two sets X and Y, a binary relation f between X and Y is a function (from X to Y) if for every element x in X there is exactly one y in Y such that f relates x to y.The sets X and Y are called the domain and codomain of f, respectively.
A function f from X to Y. The blue oval Y is the codomain of f. The yellow oval inside Y is the image of f, and the red oval X is the domain of f. In mathematics, a codomain or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set Y in the notation f: X → Y.
In mathematics, the support of a real-valued function is the subset of the function domain of elements that are not mapped to zero. If the domain of f {\displaystyle f} is a topological space , then the support of f {\displaystyle f} is instead defined as the smallest closed set containing all points not mapped to zero.
A critical point of a function of a single real variable, f (x), is a value x 0 in the domain of f where f is not differentiable or its derivative is 0 (i.e. ′ =). [2] A critical value is the image under f of a critical point.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
The domain of f is the set of complex numbers such that (). Every rational function can be naturally extended to a function whose domain and range are the whole Riemann sphere (complex projective line). A complex rational function with degree one is a Möbius transformation.