Search results
Results from the WOW.Com Content Network
Siméon Denis Poisson. Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics.For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate the corresponding electrostatic or gravitational (force) field.
Isoelastic utility for different values of . When > the curve approaches the horizontal axis asymptotically from below with no lower bound.. In economics, the isoelastic function for utility, also known as the isoelastic utility function, or power utility function, is used to express utility in terms of consumption or some other economic variable that a decision-maker is concerned with.
The Stone–Geary utility function was first derived by Roy C. Geary, [2] in a comment on earlier work by Lawrence Klein and Herman Rubin. [3] Richard Stone was the first to estimate the Linear Expenditure System.
The function f is variously called an objective function, criterion function, loss function, cost function (minimization), [8] utility function or fitness function (maximization), or, in certain fields, an energy function or energy functional. A feasible solution that minimizes (or maximizes) the objective function is called an optimal solution.
The grand canonical partition function applies to a grand canonical ensemble, in which the system can exchange both heat and particles with the environment, at fixed temperature, volume, and chemical potential. Other types of partition functions can be defined for different circumstances; see partition function (mathematics) for
Exponential Utility Function for different risk profiles. In economics and finance, exponential utility is a specific form of the utility function, used in some contexts because of its convenience when risk (sometimes referred to as uncertainty) is present, in which case expected utility is maximized. Formally, exponential utility is given by:
The right-hand side of the equation is equal to the change in demand for good i holding utility fixed at u minus the quantity of good j demanded, multiplied by the change in demand for good i when wealth changes. The first term on the right-hand side represents the substitution effect, and the second term represents the income effect. [1]
The function (()) indicates the utility the representative agent of consuming at any given point in time. The factor e − ρ t {\displaystyle e^{-\rho t}} represents discounting . The maximization problem is subject to the following differential equation for capital intensity , describing the time evolution of capital per effective worker: