enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    The standard convergence condition (for any iterative method) is when the spectral radius of the iteration matrix is less than 1: ((+)) < A sufficient (but not necessary) condition for the method to converge is that the matrix A is strictly or irreducibly diagonally dominant. Strict row diagonal dominance means that for each row, the absolute ...

  3. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.

  4. Alternating-direction implicit method - Wikipedia

    en.wikipedia.org/wiki/Alternating-direction...

    In numerical linear algebra, the alternating-direction implicit (ADI) method is an iterative method used to solve Sylvester matrix equations.It is a popular method for solving the large matrix equations that arise in systems theory and control, [1] and can be formulated to construct solutions in a memory-efficient, factored form.

  5. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics , the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations , namely those whose matrix is positive-semidefinite .

  6. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix. It is also sometimes referred to as LR decomposition (factors into left and right triangular matrices).

  7. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    At any step in a Gauss-Seidel iteration, solve the first equation for in terms of , …,; then solve the second equation for in terms of just found and the remaining , …,; and continue to . Then, repeat iterations until convergence is achieved, or break if the divergence in the solutions start to diverge beyond a predefined level.

  8. Modified Richardson iteration - Wikipedia

    en.wikipedia.org/wiki/Modified_Richardson_iteration

    Modified Richardson iteration is an iterative method for solving a system of linear equations. Richardson iteration was proposed by Lewis Fry Richardson in his work dated 1910. It is similar to the Jacobi and Gauss–Seidel method. We seek the solution to a set of linear equations, expressed in matrix terms as =.

  9. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    This can be contrasted with implicit linear multistep methods (the other big family of methods for ODEs): an implicit s-step linear multistep method needs to solve a system of algebraic equations with only m components, so the size of the system does not increase as the number of steps increases. [27]